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+u’2 +- yu’2 + tu’u’ = j (8) (5.4) 

where f is an arbitrary analytic function. 
To obtain the corresponding solution of system (3.2) it is convenient to select E=V 

as the parameter. Changing to real variables by means of (5.1) we obtain the double wave of 
system (3.2) 

R = v, (01. (4. -3 = * (on o2) 

in which the functions rp,$ satisfy the Cauchy-Riemann conditions. 

REFERENCES 

1. CHIRKUNOV YU.A., Group analysis of the Lam6 equations, Dynamics of a Continuous Medium, 
23, Institute of Hydrodynamics, Sibesian Department, USSR Academy of Sciences, 
Novosibirsk, 1975. 

2. OVSYANNIKOV L.V., Group Analysis of Differential Equations. Nauka, Moscow, 1978. 
3. TRUESDELL C., A first Course in Rational Mechanics of a Continuous Medium, /Russian trans- 

lation/, Mir, Moscow, 1975. 
4. CARTAN A., Differential Calculus. Differential Forms, /Russian translation/, Mir, Moscow, 

1971. 

Pm u.s.S.R.,Vol.52,No.3,pp.371-376,1988 
Printed in Great Britain 

THE GEOMETRICAL CHARACTERISTICS 
ELASTIC 

OF EQUALLY-STRONG 
BODIES* 

Translated by M.D.F. 

0021-%928,'88 $1o.oo+0.oo 
0 1989 Pergamon Press plc 

BOUNDARIES OF 

S.B. VIGDERGAUZ 

The necessary conditions for the existence of systems of surfaces or plane 
curves of special shape determined from mechanical considerations, by 
potential theory methods, are found, a number of integral identities is 
constructed, and certain modifications of the Robin problem are solved. 

1. A linearly elastic homogeneous and istoropic three-dimensional domain S of the space 
E is considered which is weakened by a set of m non-intersecting closed cavities S,- with 
smooth boundaries l?k (k = i,&...,na) and is loaded by remote forces PI (i =$,2,3) along 
the axes of an x&J, Cartesian coordinate system, G, Y are the elastic moduli of the 
medium, and I,(z), l,(r) are stress tensor invariants at an arbitrary point z = (~~,.r~,z~). 

The boundary r = U rk is called equally-strong for a given load [I] if the identity 
II (5)= const holds at any of its points E = (Ei, &, E3). The constant on the right-hand side 
equals P, -l-P, + Pa = P. It is proved in III that such a boundary minimizes the maximumvalue, 
over the domain, of the local Mises plasticity criterion F (x) = z,2 (t) -31,(r)), thereby being 
the solution of the following optimal control type problem: 

max F(r)- min 
z&s+m trt 

(1.f) 

Since the function F(x) is invariant under a similarity transformation of the coordinates, 
the optimal boundary according to (l.l), if it exists, is not defined uniquely, but to at 
least the accuracy of a scale given by an arbitrary factor C. Indeed, the class of solutions 
is significantly broader in many cases, which is utilized substantially in Sect.3. 

It has been established /l/ that the components ofthe displacement vector u(z) of the 
state of stress corresponding to a perturbation induced in the homogeneous field of cavities 
are harmonic functions in the domain S that decrease at 'infinity as O(Iz I-"), take values 
on the optimal boundary that are proportional to the corresponding coordinate at the point 
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where dik are certain constants, and moreover 

div II (s) = 0, rot, II (2) sa 0, I E $ (1.3) 

In combination with the loading boundary conditions /2/ 

muiiafh =L -Pini, i == 1, 2.3 (1.4) 

the optimality relationships (1.2) form an inverse boundary value problem of elasticity theory 

that afford a constructive possibility for finding the shape of the equally-strong boundary 

/l, 3/ in a number of cases. Here II = (n,,n,,n,) is the unit vector of the internal normal 

to I? for S at the point E. 

By using their individuality, the special form of the right-hand sides of the identities 

(1.2) and (1.4) enables us to construct harmonic continuations of the components of thevector 

u (2) within the domain S_ == I-S,-, respectively by the functions ?L&; or -P&' (L = 1, 

2, 3), z' = 1x,', x2', IQ') tE s_. The vectors ti, and Vi obtained in this manner are defined in all 

space, have a given asymptotic form at infinity, are harmonic in S and s_, but possess dif- 

ferent properties at optimal boundary points. Namely, it follows from (1.4) that the vector 

C, is continuous on I‘, but experiences a jump in the normal derivatives there 

&$I (E) -1 [~?U,/dn+ - dU,/dn-] ==: -PII (1.5) 

On the other hand, it follows from (1.2) that the jump in V, on I‘ equals 

4Gp, (Q = iav,!an+ - av,!an-I -=: P (El. &, &) (1.6) 

and its normal derivatives are continuous. 

Relations (1.5) and (1.6) enable us /4/ to write r, and V, in terms of the integral 

operators A,, ~2, of a simple or double layer, respectively, of the given densities 

4nLJ1 (X) ~-- ‘2, I["r ({)I =- --PA, In (C)l (1.7) 
,inV, ix) -- ‘1% fp, (E)J ~~ --PA, I&, j,. 531 

Differentiating the first of identities (1.7) with respect to r~ and then passing to the 
limit I+ q E f in all the relationships obtained we obtain in scalar form, taking (1.2) 

and (1.4) and the properties of the potentials into account /4/, 

(1.8) 

(1.9) 

(1.10) 

(1.11) 

(A** is the operator conjugate to A,). 
It follows from the representations obtained that the constants dik therein are zero. 

Indeed, by taking into account that the operator A, of an arbitrary constant reduces to a 

Gauss integral /4/, and consequently, is calculated explicitly, relation(l.0) can be written 

in the form of inhomogeneous Fredholm-type integral equations 

Iii - ?lA, (5i) = (Yi - l)d,, (1.12) 

The identity (1.10) means that hi/&z is the eigenfunction of the operator i&* 

corresponding to the eigennumber yi (i = 1,?,3). Since all the points of the spectrum of the 

operators under consideration are simple /4/, this function is unique. It is obviouslp 

orthogonal to all dih.; consequentiy, each of the Eqs.(1.12) has a unique solution /4/. It 

is verified directly that it reduces to the constant (--dir) on the surface rk but this 

contradicts (1.12), and, consequently, rli, :- 0. 

Therefore, vi is the eigenfunction of the operator & for the number yi, with support 
ontheequally-stronq boundary, whiletheidentity (1.8) resulting from (1.9) and (1.10) is, 
together with (1.111, a special case of the relationships obtained /5/ with respect to =nY 
eigenfunctrons of the mutually conjugate operators ;'%, AZ* on arbitrary smooth surfaces. It 

should be noted that the proof presented in /5/ is not accurate and needs obvious revisions. 

The spectrum of integral operators of potential type lies outside the unit circle, as is 

well-known /4/; consequently 1 pi 1 -1 (i =I 1,2,3), which is equivalent to the triangle ineyual- 

ity 

I f', I I 1'2 I -I- I f':, I (1.13) 
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and two analogous ones obtained from it by cyclic permutation of the subscripts. According to 

the above, they are the necessary condition for the solvability of problem (1.1) in this 

formulation. For a single cavity, these inequalities are also sufficient /l/, a triaxial 

ellipsoid surface with a ratio between the axes dependent on the load is optimal. 

Relations (1.8)-(1.11) are obtained as a result of clear simplification of the elastic 

equilibrium equations of the medium in domains with equally-strong boundaries. They are also 

valid in the two-dimensional optimization problem for a plane with equally-strong holes for 
JJr = P (P_2Pi) (i = 1, 2), P = P, f P,. The condition for its solvability takes the form 

4 = I(P, - Pl)i(P, + Pz)l < 1 (1.14) 

Earlier /6/, the univalency of the conformal mapping of a domain with unknown boundaries 

into a standard domain while actually seeking them was posed as a requirement. 

The identities mentioned describe the geometry of a set of equally-strong surfaces defined 

in problem (1.1) and parametrically dependent on values of the load Pi. The latter can vary 

within limits which are not wider than the allowed inequalities (1.13). 

2. In the case m> 1 the components U,i (X) of the vector U, are an extension of 

first-order ellipsoidal harmonic functions /2/ since they allow of the integral representation 

(1.7) and agree in S_ with the linear harmonic polynomials hjXi. By using them, three (out 

of a possible five) analogous second-order functions can indeed be constructed by means of the 

formula 

U, (X) = (Liz,, U,,, U,,) = R (X) x U, (X), X E E 

(R (X) = (X1, X2, XJ is the radius-vector of the point X). 

It follows from (1.3) that the vector u, (X) is also continuous everywhere and harmonic 

in s and S_ (Vz is the Laplace operator): 

X E S, VW, (2) = rot u (X) z 0 
x E s_, vw,i (5) = 2 (P, - Pj).z$Tj = 0 
i#j#l? i,j) 1=1,2,3 

Taking account of (1.5) we conclude that the jump in the normal derivative of the vector 

U, on r equals 

R (E) x [~3C,/hzl = --PR (E) x n (E) 

from which a representation of the type (1.'7) results 

uz (X) = --PA, [R (5) x n (C)l (2.1) 

These functions are sufficient to construct a closed solution in S for the so-called 

Robin elastostatic problem of the second kind /2/. It consists of determining the state of 

stress and strain of an elastic medium that occurs during rotation through (small) angles 8, 

around the axes Xi of a system of absolutely solid bodies included therein that occupy the 

domain s_. 

It turns out that in the case of equally-strong boundaries the solution is independent 

explicitly of m and is constructed according to a scheme presented in /2/ for a single in- 

clusion in the shape of a triaxial ellipsoid. To this end, the appropriate displacementvector 

v (X) is sought in the Papkovich-Neuber form /2/ (B(z) is a vector and B,(X) is a scalar) 

U (x) = 4 (1 - v)B - grad (R-B -I- B,) (2.2) 
B, = NAU,, + N&J,, +N,W',,, B, = D,%~~~-D:'W'~a 

The components B,,B, are obtained from B, by cyclic permutation of the subscripts. 

Substitution of (2.2) into the boundary condition of the problem /2/ V,(E) = e1g3 - t3& and 

two analogous to it also result in a linear system of algebraic equations in the unknown con- 

stants Ni,Di,Di’ which separate, as in /2/, into three that correspond separately to rotations 

through the angles 8,. Thus, for 8, the system agrees, apart from the notation, with (5.4.5) 

of /2/ if the optimality relationships [I] for an ellipsoid are taken into account. It is 
not given here to conserve space. 

The partial derivatives of the components U,,U, with respect to xi on I? needed to 

construct the system are found from (1.7) and (2.1) by the Hugoniot-Hadamard differentiation 

formulas /4/. For instance 
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3. We will now consider the two-dimensional problem (1.1) (P, = 0, P = P, i- P2). i,or a 

large number of different modifications of the hole arrangement in the plane their optimal 

boundary is found explicitly /6/ .: ai a dependence of the form 

52 = f El, m, cl, c, 01, %, . . ., Oam) (3.1) 

where f is a definite function for each m and or (k = 1, 2,. .., 2rn) are geometric parameters 

that are coordinates of the ends of m slits along the real axis of the auxiliary plane on 

which S is mapped in /6/ while seeking r from conditions (1.2)-(1.4). IJnder additional 

symmetry their number can be reduced. 

It is important that inequality (1.14) is not only a necessary but a sufficient condition 

in all the cases considered in /6/, that ensure the existence of equally-strong boundaries 

for any values of wk with the natural constraint 

denoting that the slits on the auxiliary plane do not intersect. Therefore, (3.1) exhaustively 

describes a 2m parametric family of solutions of the plane problem (1.1) for a given g. 

On this basis, the ordinary Robin problem, that consists /4/ of determining the density 

p (5) of a logarithmic simple layer potential with support on r that takes constant values 

in Sb-, can be solved analytically, which is equivalent to constructing a multiconnected 

analogue of the zero-order ellipsoidal harmonic function u,(z) in E (t is the arclength of 

the contour r): 

(3.2) 

U, (x’) = const, Z’ E s_; v*u, (dg = 0, x s r 

Although only m linearly independent solutions of this problem /4/ exist in a broad class 

of domains of different geometry, the function p(g), insofar as is known, is actually found 

only for an ellipse /2/ as the boundary of one optimal hole /6/ 

- - 
p (E) = D/H, (p, I+,) = D 1/l + v,V 61 - P’ (3.3) 

E, z cp,, Ez = Cl/(1 - p2)(1 + %J2), I 11 I < 1’ 

E ,*!Vo2 + &Z/(1 + Vo2) = c2 

where p,VO are elliptical coordinates of the point 5 on the ellipse Y = Yg, Hv is the 

Lam; coefficient therein, and C and D are constants. 

Let us consider the general case m> 1. It follows /l/ from (1.3) that equally-strong 

boundaries possess a characteristic property: the internal gravitation potential of the 

masses distributed uniformly within them is a given quadratric form of the coordinates 

(3.4) 

We now assign an optimal boundary r with parameters {WI} and without changing g we 

se:;c:)a new {Dj'} such that each contour rX lies strictly within the corresponding rk‘ 

. . According to the above, there exist infinitely many such pairs r and r'. According 

to (3.4), the gravitational potential obtained by this method for a system of annular domains 

retains a constant value within (Sk- + rk) 

(o(x)=& 1 ln&dz’=& 5 In hdz’- 
S-‘--s_ s-’ 

P - 
2n s 

In ++~'=Ab?"', xE&-+rh., k= l,Z,...,m 
s- 

(35) 

which generalizes the two-dimensional analogue of Newton's theorem /7/ on the absence of 
attraction within a constant density elliptical ring to the multiconnected case. 

We prove that a closed expression can be constructed for the density p(E) for an arbitra 

system of equally-strong contours in terms of the function f from (3.1) by a passage to the 
limit in the identity (3.5). 

Let the boundary r' described earlier be obtained from r by a small variation of the 

form (6&, 6g,) = ha. The parameter h (E) is the thickness of the ring between r,' and rk 

ry 



evaluated along n; consequently 

h (5) = j/(SW + fSW = (r/l -t- f8fe)G 
fs = wx, 

since the quantities s%,, s%, are connected by the equation of the normal 
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(3.6) 

For simplicity 
side goes over into 
note the dependence 

and expressing a%, 

f$%2 -I- S%* = 0 (3.7) 

we require definite symmetry from the domain so that I' from the other 
r' by variation of a single parameter o1 -- w, say, on which we shall 
later. Then we have 

S%, = Sf fE*, Wf = f&I + f&o, f* = afiaw 

from (3.7), we obtain 

(1 -I- V)S%, = -ftf.Sw 

from which it follows that 

h (%) = w(%)60, 20 (%) = -AJfl -t fg” (3.8) 

The variation of the potential (3.4) due to the boundary motion is written in the form 

P 
w4== s w (%I ln 

f 

According to 13.5) 6qi = s@) (w) 1 and therefore finally 

dbp’ (a) 
-&S w(E)ln&dt=~ 

r 

q E Sk- -I- rK, k = 2,2, . . ., m 

(3.9) 

We conclude 
solutions of the 

from a comparison of (3.9) with 13.2) that the function w(g) is one of the 
Robin problem. Here 

av, (%)/an = -(Zn)-‘Pw (E) 

The total mass Q(o,Q) of this neutral layer is determined just as simply. We divide 
each closed contour rk into two parts by a line parallel to the X, axis such that the func- 

tion %,I%3 is defined uniquely from (3.1) in each of them. Let 3+ (%1) and y, (%J be its 
corresponding branches and %~I(o) and %B2(~) partition points of rr (Fiq.1). Then taking 
(3.81 into account 

(3.10) 

(A is the total area of all the holes). Here the rules for the differentiation of a definite 
integral with respect to a parameter are used /9/. In the majority of cases (3.10) simplifies 
since the sum vanishes because of the symmetry of S along the X, axis. 

For instance, when m = 1, substitution of the equation of an ellipse from (3.3) into 
(3.8) results, as is required, in the first of relations (3.3). Here A = nC% (1 - if) and 
Q = 23tC% (l - 4%). Less elementary cases are also examined analogously. 

Two symmetric holes on the X1 axis. The appropriate function f&C, 9.e) and the ex- 
pression for the total area of the holes have the form /6/ 

I Es (Ed I = C (1 f d[E (4 K-’ (0) F C’S!, all- E W, a) 

co (5 - 4) B 51 s c (1 - d; O<;o<l 

A = &SC* (l - 9%) 17, - 02- E (0) K-’ (off 

(P, E are elliptic and K,E the complete elliptic integrals Of the first and second kinds). 
Substitution of these expressions into (3.8) and (3.10) when taking account of formulas for 
the derivatives of elliptic integrals with respect to the parameter /lo/ yields 



p(5)= (I~-~)[E(o)~~(w)(~-~~~)w~~~ZY~~~B(Y~W)] 

2 (C*A ('I', ti)) -+ (1 + q”) (?$- E (o))K-' (to))21”z 

B (Y, 61) = [E (CO) F(Y, CO) - K (OI) E (Y, o)][E (0) - K (o)(l - 0*)3 A (Ur, 0); A ('I', 0) = (1 - 0% sin '0" 

Q = 4nc* (2 - q)[2 - 20 - (2E (0) -- K (0)) (1 - 02 - I? (0)) o-1 (1 - &-'I 

Fig.2 shows graphs of the 

function p (t) normalized by the 

condition p(l)=1 for q = (I Xl<: 

o = 0.2; 0.4; 0,8 (curves 1-3) . 
A periodic system of holes 

arranged with a constant spacing 

ho on the X, axis. The shape of 
r is also found in /6/ 

Fig. 1 

0.5 

Fig.2 

h, = 2nC, 5 = c-1 (1 - 

As compareti with /6/, inaccuracies of a formal nature are 

interesting that h, is independent of theloadparameters P,,P,. 

P (51) = 
C ( 1 + q) tg Q) cm $.I 

[costed - cd 0 + C (1 + q)(l - q)-’ sina cl]"' 

qr z I61<~. ogogn/2 (3.11) 

corrected in (3.11). It is 

It follows that (3.11) that 

(81 

aA ~~ Q (0) = 7 - 4+qq); s I =W(l-q2)(n-2w)tgo 
” ” 

Curves 4-6 in Fig.2 are graphs of p(&) normalized by the condition p(O)= i for q= 0.4 
and o = 0.3; 0.5; 0.9. 

In conclusion, we note that the constant value u itself of the function O,(E) on P and 
in S_ can be found by using the electrostatic analogy of the Robin problem /7/, when U is the 

charge distributed in an equilibrium manner over 1‘, and U is the potential of the system of 
contours so that C,c'= Q(o), where C, is the capacitance of P. As we know, it is conformally 
invariant and consequently, can be evaluated not for J? but for the generating system of slits 
on the auxiliary plane mentioned at the beginning of Sect.3. For them C, is always expressed 
in quadratures /ll/. The appropriate formulas are nore presented because of their length. 
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